Radixin is involved in lamellipodial stability during nerve growth cone motility.

نویسندگان

  • L Castelo
  • D G Jay
چکیده

Immunocytochemistry and in vitro studies have suggested that the ERM (ezrin-radixin-moesin) protein, radixin, may have a role in nerve growth cone motility. We tested the in situ role of radixin in chick dorsal root ganglion growth cones by observing the effects of its localized and acute inactivation. Microscale chromophore-assisted laser inactivation (micro-CALI) of radixin in growth cones causes a 30% reduction of lamellipodial area within the irradiated region whereas all control treatments did not affect lamellipodia. Micro-CALI of radixin targeted to the middle of the leading edge often split growth cones to form two smaller growth cones during continued forward movement (>80%). These findings suggest a critical role for radixin in growth cone lamellipodia that is similar to ezrin function in pseudopodia of transformed fibroblasts. They are consistent with radixin linking actin filaments to each other or to the membrane during motility.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Suppression of Radixin and Moesin Alters Growth Cone Morphology, Motility, and Process Formation In Primary Cultured Neurons

In this study we have examined the cellular functions of ERM proteins in developing neurons. The results obtained indicate that there is a high degree of spatial and temporal correlation between the expression and subcellular localization of radixin and moesin with the morphological development of neuritic growth cones. More importantly, we show that double suppression of radixin and moesin, bu...

متن کامل

Myosin 1c and myosin IIB serve opposing roles in lamellipodial dynamics of the neuronal growth cone

The myosin family of motor proteins is implicated in mediating actin-based growth cone motility, but the roles of many myosins remain unclear. We previously implicated myosin 1c (M1c; formerly myosin I beta) in the retention of lamellipodia (Wang et al., 1996). Here we address the role of myosin II (MII) in chick dorsal root ganglion neuronal growth cone motility and the contribution of M1c and...

متن کامل

The role of microtubules in growth cone turning at substrate boundaries

To understand the role of microtubules in growth cone turning, we observed fluorescently labeled microtubules in neurons as they encountered a substrate boundary. Neurons growing on a laminin-rich substrate avoided growing onto collagen type IV. Turning growth cones assumed heterogeneous morphologies and behaviors that depended primarily in their extent of adhesion to the substrate. We grouped ...

متن کامل

Kinetic-structural analysis of neuronal growth cone veil motility.

Neuronal growth cone advance was investigated by correlative light and electron microscopy carried out on chick dorsal root ganglion cells. Advance was analyzed in terms of the two principal organelles responsible for protrusive motility in the growth cone - namely, veils and filopodia. Veils alternated between rapid phases of protrusion and retraction. Electron microscopy revealed characterist...

متن کامل

Focal adhesion kinase promotes integrin adhesion dynamics necessary for chemotropic turning of nerve growth cones.

The ability of extending axons to navigate using combinations of extracellular cues is essential for proper neural network formation. One intracellular signaling molecule that integrates convergent signals from both extracellular matrix (ECM) proteins and growth factors is focal adhesion kinase (FAK). Analysis of FAK function shows that it influences a variety of cellular activities, including ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular biology of the cell

دوره 10 5  شماره 

صفحات  -

تاریخ انتشار 1999